Estou no processo de criação de um algoritmo de negociação forex e queria tentar a minha chance de calcular a EMA (médias móveis exponenciais) .Meus resultados parecem estar corretos (em comparação com os cálculos que fiz à mão), então acredito que o método a seguir funciona, mas só queria obter um par extra de olhos para ter certeza de que não estou perdendo nada.

Observe que isso apenas retorna a EMA para o preço mais recente, não retorna uma matriz de EMA “s, pois não é isso que eu preciso para minha aplicação.

I estou usando este link como referência: Média móvel exponencial

class Indicators: def sma(self, data, window): """ Calculates Simple Moving Average http://fxtrade.oanda.com/learn/forex-indicators/simple-moving-average """ if len(data) < window: return None return sum(data[-window:]) / float(window) def ema(self, data, window, position=None, previous_ema=None): """ Calculates Exponential Moving Average http://fxtrade.oanda.com/learn/forex-indicators/exponential-moving-average """ if len(data) < window + 2: return None c = 2 / float(window + 1) if not previous_ema: return self.ema(data, window, window, self.sma(data[-window*2 + 1:-window + 1], window)) else: current_ema = (c * data[-position]) + ((1 - c) * previous_ema) if position > 0: return self.ema(data, window, position - 1, current_ema) return previous_ema # Sample close prices for GBP_USD currency pair on the 2 hour timeframe close_prices = [1.682555, 1.682545, 1.682535, 1.682655, 1.682455, 1.682685, 1.68205, 1.683245, 1.68405, 1.68401, 1.68506, 1.685825, 1.685955, 1.686595, 1.686325, 1.686375, 1.68701, 1.684995, 1.687245, 1.686135, 1.686205, 1.68724, 1.68753, 1.687775, 1.688245, 1.687745, 1.68699, 1.687285, 1.686325, 1.686295, 1.683945, 1.683035, 1.68401, 1.68327, 1.685185, 1.684755, 1.685265, 1.685325, 1.68625, 1.685645, 1.684355, 1.68387, 1.68413, 1.68416, 1.683425, 1.68481, 1.683245, 1.683645, 1.68325, 1.682745, 1.680385, 1.680655, 1.680875, 1.679995, 1.680445, 1.68064, 1.67937, 1.677735, 1.67769, 1.67777, 1.677525, 1.677435, 1.67766, 1.677835, 1.678005, 1.67823, 1.67902, 1.678605, 1.678425, 1.67876, 1.678555, 1.678505, 1.679085, 1.678755, 1.678125, 1.677495, 1.67677, 1.676205, 1.67716, 1.67741, 1.677135, 1.679295, 1.68054, 1.68143, 1.68115, 1.68111, 1.68055, 1.680495, 1.680565, 1.681375, 1.68244, 1.673395, 1.670885, 1.67156, 1.669525, 1.66906, 1.66903, 1.668935, 1.668805, 1.667895, 1.667905, 1.668485, 1.666345, 1.66832, 1.668005, 1.668615, 1.669305, 1.668415, 1.66891, 1.66843, 1.66855, 1.66834, 1.668725, 1.66952, 1.668075, 1.66859, 1.669, 1.669685, 1.668575, 1.66909, 1.66957, 1.669375, 1.671655, 1.67186, 1.67244, 1.6729, 1.672965, 1.673405, 1.67284, 1.67256, 1.67216, 1.67193, 1.673265, 1.67295, 1.672705, 1.67224, 1.67221, 1.67222, 1.67254, 1.670105, 1.66501, 1.663845, 1.66201, 1.661935, 1.661725, 1.66189, 1.661605, 1.661925, 1.66215, 1.66049, 1.660185, 1.66233, 1.66374, 1.66491, 1.665195, 1.663225, 1.66267, 1.65927, 1.659415, 1.65998, 1.6583, 1.656825, 1.65741, 1.659025, 1.658355, 1.659355, 1.65871, 1.65887, 1.658595, 1.65768, 1.657965, 1.657855, 1.657415, 1.658125, 1.65816, 1.659125, 1.658245, 1.65773, 1.658585, 1.65732, 1.657825, 1.65731, 1.65725, 1.65433, 1.654875, 1.65508, 1.656205, 1.656185, 1.6567, 1.658865, 1.658805, 1.65879, 1.6584, 1.65806, 1.658145, 1.65706, 1.656925, 1.65885, 1.65917, 1.659, 1.65794, 1.65797, 1.65711, 1.658675, 1.656915, 1.65474, 1.65455, 1.654135, 1.65467, 1.65473, 1.65543, 1.65465, 1.65721, 1.65717, 1.65927, 1.65895, 1.65724, 1.65812, 1.657435, 1.657395, 1.65755, 1.65975, 1.65983, 1.658975, 1.658855, 1.65814, 1.65838, 1.65797, 1.65785, 1.657795, 1.658915, 1.65888, 1.65888, 1.65869, 1.65851, 1.658195, 1.659985, 1.65933, 1.65842, 1.65836, 1.658435, 1.657605, 1.660225, 1.65991, 1.65908, 1.659065, 1.659605, 1.659555, 1.660535, 1.663025, 1.662295, 1.661525, 1.662735, 1.661335, 1.660895, 1.660905, 1.66093, 1.661425, 1.65934, 1.658235, 1.658305, 1.657035, 1.652785, 1.653185, 1.65176, 1.650105, 1.648505, 1.64713, 1.646975, 1.646815, 1.646575, 1.645355, 1.646425, 1.646365, 1.648295, 1.646245, 1.646305, 1.645075, 1.644875, 1.646035, 1.64602, 1.646025, 1.645615, 1.646135, 1.645585, 1.645695, 1.646195, 1.642865, 1.64237, 1.634805, 1.634575, 1.634475, 1.631665, 1.629265, 1.631115, 1.63094, 1.631775, 1.632175, 1.631775, 1.629345, 1.632785, 1.631155, 1.631765, 1.632865, 1.6327, 1.618735, 1.621365, 1.622655, 1.620755, 1.617995, 1.616985, 1.611595, 1.61411, 1.615785, 1.613975, 1.611155, 1.610865, 1.60935, 1.609255, 1.610085, 1.607585, 1.608405, 1.610095, 1.611495, 1.610465, 1.609775, 1.608715, 1.608615, 1.612435, 1.610495, 1.612275, 1.612555, 1.611785, 1.612515, 1.612945, 1.609495, 1.612515, 1.616155, 1.613295, 1.618215, 1.621225, 1.62018, 1.619885, 1.619565, 1.620435, 1.619375, 1.624325, 1.625165, 1.625185, 1.621845, 1.622345, 1.623795, 1.621875, 1.627455, 1.624845, 1.623875, 1.623625, 1.623295, 1.625575, 1.626125, 1.622445, 1.622145, 1.624155, 1.626055, 1.625755, 1.62671, 1.627055, 1.625875, 1.625055, 1.623925, 1.624645, 1.625215, 1.624725, 1.624025, 1.624515, 1.624205, 1.623755, 1.623325, 1.62273, 1.622535, 1.6242, 1.623045, 1.62169, 1.618415, 1.618185, 1.619605, 1.621425, 1.627035, 1.628145, 1.62778, 1.6271, 1.626485, 1.626335, 1.627615, 1.627965, 1.63094, 1.630125, 1.632065, 1.633775, 1.632895, 1.63064, 1.627885, 1.625845, 1.62667, 1.626805, 1.626695, 1.631185, 1.629635, 1.63067, 1.63367, 1.63908, 1.63709, 1.637255, 1.63738, 1.64403, 1.642545, 1.650745, 1.65183, 1.64764, 1.646825, 1.639945, 1.634085, 1.633615, 1.631255, 1.63123, 1.62993, 1.628745, 1.629105, 1.63096, 1.63417, 1.635245, 1.634745, 1.633755, 1.63316, 1.633325, 1.63464, 1.63394, 1.635555, 1.636435, 1.636235, 1.63692, 1.638125, 1.63869, 1.637795, 1.6323, 1.638925, 1.640955, 1.63767, 1.63686, 1.636575, 1.63977, 1.63909, 1.63945, 1.64001, 1.641005, 1.63986, 1.63838, 1.64039, 1.64047, 1.636, 1.63434, 1.634115, 1.633895, 1.633725, 1.63255, 1.633225, 1.63228, 1.632915, 1.63046, 1.630275, 1.628565, 1.63377, 1.631165, 1.630405, 1.63149, 1.63178, 1.63308, 1.63234, 1.630675, 1.630235, 1.63027, 1.632255, 1.630505, 1.626665, 1.625325, 1.624565, 1.624355, 1.62497, 1.62389, 1.62394, 1.62399, 1.622855, 1.621865, 1.62358, 1.62292, 1.623685, 1.624135, 1.62672, 1.624515, 1.624305, 1.624215, 1.62416, 1.623665, 1.6259, 1.625805, 1.626625, 1.62005, 1.618425, 1.62162, 1.62192, 1.620865, 1.62121, 1.621525, 1.621475, 1.619475, 1.619145, 1.619835, 1.620235, 1.6204, 1.618875, 1.622535, 1.62144, 1.617695, 1.61798, 1.61831, 1.618825, 1.61982, 1.62336, 1.621535, 1.61987, 1.616985, 1.6134, 1.61441, 1.6139, 1.61428, 1.61376, 1.61498, 1.615715, 1.612955, 1.61323, 1.61406, 1.6102, 1.606695, 1.60757, 1.59774, 1.59611, 1.597425, 1.597505, 1.59687, 1.59683, 1.596235, 1.59762, 1.59792, 1.59878, 1.596685, 1.598745, 1.59928, 1.60067, 1.602755, 1.603465, 1.607645, 1.608225, 1.60736, 1.60442, 1.604255, 1.60657, 1.60907, 1.604735, 1.607615, 1.61128, 1.607135, 1.60798, 1.60935, 1.60968, 1.60865, 1.607105, 1.60607, 1.606545, 1.60638, 1.607575, 1.60701, 1.60822, 1.606605, 1.604175, 1.617025, 1.615945, 1.616205, 1.61726, 1.61868, 1.618035, 1.62082, 1.620575, 1.62089, 1.61883, 1.61219, 1.61243, 1.61167, 1.61194, 1.61212, 1.61281, 1.61193, 1.61268, 1.606455, 1.60555, 1.60459, 1.60322, 1.604705, 1.60562, 1.606145, 1.6077, 1.60683, 1.60916, 1.611945, 1.61187, 1.611335, 1.60832, 1.609145, 1.60955, 1.608575, 1.60676, 1.606755, 1.60695, 1.607395, 1.606405, 1.6076, 1.606815, 1.60695, 1.604905, 1.59545, 1.59164, 1.59162, 1.592925, 1.59173, 1.590465, 1.590475, 1.588995, 1.58925, 1.590845, 1.590575, 1.589605, 1.59287, 1.59246, 1.597345, 1.596035, 1.591425, 1.59756, 1.60024, 1.59879, 1.600055, 1.598305, 1.597, 1.59925, 1.596045, 1.598845, 1.600635, 1.606405, 1.60702, 1.609275, 1.607365, 1.609575, 1.60851, 1.60739, 1.607985, 1.60689, 1.60864, 1.61119, 1.606205, 1.60851, 1.61039, 1.6088, 1.609185, 1.609595, 1.609035, 1.609775, 1.61074, 1.61063, 1.61041, 1.612855, 1.612635, 1.61363, 1.613635, 1.61695, 1.61705, 1.615905, 1.615515, 1.61577, 1.617205, 1.618045, 1.616225, 1.61466, 1.61568, 1.61528, 1.613335, 1.613045, 1.611435, 1.61178, 1.611265, 1.612395, 1.612615, 1.61215, 1.607975, 1.604285, 1.60507, 1.60358, 1.606845, 1.606225, 1.605045, 1.60427, 1.60436, 1.604135, 1.60491, 1.60554, 1.603425, 1.60145, 1.602715, 1.602035, 1.603575, 1.60334, 1.602125, 1.602895, 1.602555, 1.60353, 1.603785, 1.60398, 1.603185, 1.60395, 1.605205, 1.608145, 1.6097, 1.608285, 1.60858, 1.609015, 1.608575, 1.609035, 1.61034, 1.61067, 1.61045, 1.610075, 1.609925, 1.609565, 1.61126, 1.61328, 1.612295, 1.61265, 1.611675, 1.61242, 1.61272, 1.61275, 1.61212, 1.612105, 1.610675, 1.611365, 1.617255, 1.61567, 1.613815, 1.61384, 1.613175, 1.61411, 1.6132, 1.613675, 1.61394, 1.613675, 1.612405, 1.61159, 1.61244, 1.6149, 1.609405, 1.600625, 1.60129, 1.600285, 1.597765, 1.59804, 1.597085, 1.59792, 1.598775, 1.598545, 1.60051, 1.602205, 1.599575, 1.599565, 1.600345, 1.59987, 1.599305, 1.599525, 1.597605, 1.599295, 1.59902, 1.600385, 1.59634, 1.59984, 1.599365, 1.599665, 1.59966, 1.597265, 1.593855, 1.59653, 1.59713, 1.59792, 1.59974, 1.60036, 1.599825, 1.598095, 1.598495, 1.59798, 1.597485, 1.59773, 1.597355, 1.5986, 1.599495, 1.599755, 1.60003, 1.600025, 1.600375, 1.60105, 1.598955, 1.600155, 1.599765, 1.600475, 1.60022, 1.6006, 1.60181, 1.596045, 1.5943, 1.588815, 1.59068, 1.596245, 1.59832, 1.59755, 1.59771, 1.59605, 1.595625, 1.59563, 1.597925, 1.599085, 1.59813, 1.594745, 1.593165, 1.592695, 1.586095, 1.58439, 1.583355, 1.583495, 1.58396, 1.58395, 1.58188, 1.58351, 1.58259, 1.583445, 1.582, 1.58423, 1.584275, 1.58594, 1.58744, 1.58719, 1.588185, 1.58738, 1.589525, 1.590055, 1.59015, 1.588425, 1.590905, 1.589435, 1.587295, 1.585705, 1.585945, 1.584915, 1.584655, 1.585055, 1.585295, 1.58395, 1.58466, 1.584475, 1.58468, 1.585585, 1.586555, 1.588415, 1.59241, 1.591835, 1.591695, 1.590885, 1.591405, 1.590985, 1.591665, 1.592275, 1.5882, 1.581655, 1.580375, 1.58148, 1.57864, 1.578555, 1.57667, 1.577125, 1.577305, 1.57743, 1.577365, 1.577185, 1.57641, 1.574255, 1.57483, 1.57164, 1.570785, 1.57102, 1.5706, 1.568675, 1.567595, 1.56684, 1.56692, 1.56813, 1.567345, 1.565315, 1.560175, 1.565545, 1.568455, 1.567155, 1.566805, 1.566615, 1.567495, 1.57258, 1.572635, 1.571035, 1.56638, 1.56362, 1.564205, 1.56323, 1.564425, 1.56413, 1.564065, 1.56356, 1.56443, 1.565565, 1.565335, 1.565155, 1.56566, 1.565865, 1.564555, 1.564785, 1.564695, 1.56344, 1.5631, 1.56226, 1.561195, 1.56147, 1.560665, 1.562395, 1.56057, 1.56928, 1.566655, 1.56624, 1.566875, 1.56932, 1.56767, 1.56817, 1.567015, 1.567355, 1.56741, 1.56635, 1.565175, 1.566865, 1.570025, 1.57282, 1.56816, 1.570325, 1.56959, 1.56924, 1.56901, 1.570075, 1.569705, 1.56823, 1.56393, 1.56667, 1.56727, 1.56499, 1.56707, 1.564855, 1.566205, 1.56555, 1.564845, 1.565205, 1.56587, 1.56643, 1.56677, 1.564145, 1.56529, 1.56839, 1.568565, 1.569955, 1.569735, 1.570485, 1.57035, 1.569595, 1.568, 1.567995, 1.568395, 1.56889, 1.567615, 1.56646, 1.57027, 1.57135, 1.57154] 

Comentários

  • Bem-vindo ao CodeReview.SE! Você seria capaz de fornecer dados fictícios para que se pudesse testar seu código antes de revisá-lo?
  • Olá Josay, I ' Adicionamos uma lista de amostra de dados para você se ' quiser testar.

Resposta

  • A recursão é uma boa ferramenta para o trabalho certo, mas aqui é usada para realizar um loop simples. Como tal, o código .. .
    • é mais difícil de ler e raciocinar sobre.
    • é mais lento porque muito do código em ema só precisa ser executado uma vez.
    • falhará com um valor grande o suficiente de window devido a o verflowing pilha de chamadas do Python.
  • Documente pelo menos os parâmetros de cada função, por exemplo. que window é o comprimento da janela e que position conta para trás a partir do final de data. (Na verdade, as coisas seriam mais claras se position fosse um índice normal para a frente em data)
  • Levante uma exceção quando você acha que um parâmetro tem um valor inválido. Retornar None em vez disso causará uma exceção mais confusa posteriormente. Na verdade, se eu tentar Indicators().ema(close_prices, 600) obtenho recursão infinita porque sma retorna None, que faz ema chamar sma uma e outra vez.
  • O ponto anterior também revela que if len(data) < window + 2 não é a verificação de validade correta.
  • O + 1 em data[-window*2 + 1:-window + 1] não parece corrija para mim. Suponho que você queira data[-window*2:-window]
  • A declaração return previous_ema está em um lugar estranho porque naquele ponto você calculou um novo current_ema. Este é o caso básico da recursão e é comum lidar com o caso básico primeiro.

Meu proposta para ema:

def ema(self, data, window): if len(data) < 2 * window: raise ValueError("data is too short") c = 2.0 / (window + 1) current_ema = self.sma(data[-window*2:-window], window) for value in data[-window:]: current_ema = (c * value) + ((1 - c) * current_ema) return current_ema 

Resposta

Revisão bem superficial:

Você não precisa escrever uma aula para o que está fazendo (e eu sugiro que você dê uma olhada em este vídeo ). Sua classe não encapsula nenhum dado e você apenas a usa para ter suas funções em uma mesma entidade. Eu acho que as coisas seriam mais fáceis de entender se você definisse classmethod para tornar óbvio que você não vai realmente confiar em nenhuma instância. No entanto, uma opção ainda melhor seria apenas definir funções em um módulo indicator.

Comentários

  • Obrigado pelas sugestões! Na verdade, como métodos de aula e debatido indo e voltando entre usar uma classe ou apenas definir funções em um módulo de indicador (o que farei agora).
  • Acabei de assistir ao vídeo também, ótimo material.

Deixe uma resposta

O seu endereço de email não será publicado. Campos obrigatórios marcados com *