Sono in procinto di creare un algoritmo di trading forex e volevo provare a calcolare EMA (Exponential Moving Averages) I miei risultati sembrano essere corretti (rispetto ai calcoli che ho fatto a mano) quindi credo che il seguente metodo funzioni, ma volevo solo avere un paio di occhi in più per assicurarmi che non mi mancasse nulla.

Tieni presente che questo restituisce solo lEMA per il prezzo più recente, non restituisce un array di EMA in quanto non è ciò di cui ho bisogno per la mia applicazione.

I sto utilizzando questo link come riferimento: Media mobile esponenziale

class Indicators: def sma(self, data, window): """ Calculates Simple Moving Average http://fxtrade.oanda.com/learn/forex-indicators/simple-moving-average """ if len(data) < window: return None return sum(data[-window:]) / float(window) def ema(self, data, window, position=None, previous_ema=None): """ Calculates Exponential Moving Average http://fxtrade.oanda.com/learn/forex-indicators/exponential-moving-average """ if len(data) < window + 2: return None c = 2 / float(window + 1) if not previous_ema: return self.ema(data, window, window, self.sma(data[-window*2 + 1:-window + 1], window)) else: current_ema = (c * data[-position]) + ((1 - c) * previous_ema) if position > 0: return self.ema(data, window, position - 1, current_ema) return previous_ema # Sample close prices for GBP_USD currency pair on the 2 hour timeframe close_prices = [1.682555, 1.682545, 1.682535, 1.682655, 1.682455, 1.682685, 1.68205, 1.683245, 1.68405, 1.68401, 1.68506, 1.685825, 1.685955, 1.686595, 1.686325, 1.686375, 1.68701, 1.684995, 1.687245, 1.686135, 1.686205, 1.68724, 1.68753, 1.687775, 1.688245, 1.687745, 1.68699, 1.687285, 1.686325, 1.686295, 1.683945, 1.683035, 1.68401, 1.68327, 1.685185, 1.684755, 1.685265, 1.685325, 1.68625, 1.685645, 1.684355, 1.68387, 1.68413, 1.68416, 1.683425, 1.68481, 1.683245, 1.683645, 1.68325, 1.682745, 1.680385, 1.680655, 1.680875, 1.679995, 1.680445, 1.68064, 1.67937, 1.677735, 1.67769, 1.67777, 1.677525, 1.677435, 1.67766, 1.677835, 1.678005, 1.67823, 1.67902, 1.678605, 1.678425, 1.67876, 1.678555, 1.678505, 1.679085, 1.678755, 1.678125, 1.677495, 1.67677, 1.676205, 1.67716, 1.67741, 1.677135, 1.679295, 1.68054, 1.68143, 1.68115, 1.68111, 1.68055, 1.680495, 1.680565, 1.681375, 1.68244, 1.673395, 1.670885, 1.67156, 1.669525, 1.66906, 1.66903, 1.668935, 1.668805, 1.667895, 1.667905, 1.668485, 1.666345, 1.66832, 1.668005, 1.668615, 1.669305, 1.668415, 1.66891, 1.66843, 1.66855, 1.66834, 1.668725, 1.66952, 1.668075, 1.66859, 1.669, 1.669685, 1.668575, 1.66909, 1.66957, 1.669375, 1.671655, 1.67186, 1.67244, 1.6729, 1.672965, 1.673405, 1.67284, 1.67256, 1.67216, 1.67193, 1.673265, 1.67295, 1.672705, 1.67224, 1.67221, 1.67222, 1.67254, 1.670105, 1.66501, 1.663845, 1.66201, 1.661935, 1.661725, 1.66189, 1.661605, 1.661925, 1.66215, 1.66049, 1.660185, 1.66233, 1.66374, 1.66491, 1.665195, 1.663225, 1.66267, 1.65927, 1.659415, 1.65998, 1.6583, 1.656825, 1.65741, 1.659025, 1.658355, 1.659355, 1.65871, 1.65887, 1.658595, 1.65768, 1.657965, 1.657855, 1.657415, 1.658125, 1.65816, 1.659125, 1.658245, 1.65773, 1.658585, 1.65732, 1.657825, 1.65731, 1.65725, 1.65433, 1.654875, 1.65508, 1.656205, 1.656185, 1.6567, 1.658865, 1.658805, 1.65879, 1.6584, 1.65806, 1.658145, 1.65706, 1.656925, 1.65885, 1.65917, 1.659, 1.65794, 1.65797, 1.65711, 1.658675, 1.656915, 1.65474, 1.65455, 1.654135, 1.65467, 1.65473, 1.65543, 1.65465, 1.65721, 1.65717, 1.65927, 1.65895, 1.65724, 1.65812, 1.657435, 1.657395, 1.65755, 1.65975, 1.65983, 1.658975, 1.658855, 1.65814, 1.65838, 1.65797, 1.65785, 1.657795, 1.658915, 1.65888, 1.65888, 1.65869, 1.65851, 1.658195, 1.659985, 1.65933, 1.65842, 1.65836, 1.658435, 1.657605, 1.660225, 1.65991, 1.65908, 1.659065, 1.659605, 1.659555, 1.660535, 1.663025, 1.662295, 1.661525, 1.662735, 1.661335, 1.660895, 1.660905, 1.66093, 1.661425, 1.65934, 1.658235, 1.658305, 1.657035, 1.652785, 1.653185, 1.65176, 1.650105, 1.648505, 1.64713, 1.646975, 1.646815, 1.646575, 1.645355, 1.646425, 1.646365, 1.648295, 1.646245, 1.646305, 1.645075, 1.644875, 1.646035, 1.64602, 1.646025, 1.645615, 1.646135, 1.645585, 1.645695, 1.646195, 1.642865, 1.64237, 1.634805, 1.634575, 1.634475, 1.631665, 1.629265, 1.631115, 1.63094, 1.631775, 1.632175, 1.631775, 1.629345, 1.632785, 1.631155, 1.631765, 1.632865, 1.6327, 1.618735, 1.621365, 1.622655, 1.620755, 1.617995, 1.616985, 1.611595, 1.61411, 1.615785, 1.613975, 1.611155, 1.610865, 1.60935, 1.609255, 1.610085, 1.607585, 1.608405, 1.610095, 1.611495, 1.610465, 1.609775, 1.608715, 1.608615, 1.612435, 1.610495, 1.612275, 1.612555, 1.611785, 1.612515, 1.612945, 1.609495, 1.612515, 1.616155, 1.613295, 1.618215, 1.621225, 1.62018, 1.619885, 1.619565, 1.620435, 1.619375, 1.624325, 1.625165, 1.625185, 1.621845, 1.622345, 1.623795, 1.621875, 1.627455, 1.624845, 1.623875, 1.623625, 1.623295, 1.625575, 1.626125, 1.622445, 1.622145, 1.624155, 1.626055, 1.625755, 1.62671, 1.627055, 1.625875, 1.625055, 1.623925, 1.624645, 1.625215, 1.624725, 1.624025, 1.624515, 1.624205, 1.623755, 1.623325, 1.62273, 1.622535, 1.6242, 1.623045, 1.62169, 1.618415, 1.618185, 1.619605, 1.621425, 1.627035, 1.628145, 1.62778, 1.6271, 1.626485, 1.626335, 1.627615, 1.627965, 1.63094, 1.630125, 1.632065, 1.633775, 1.632895, 1.63064, 1.627885, 1.625845, 1.62667, 1.626805, 1.626695, 1.631185, 1.629635, 1.63067, 1.63367, 1.63908, 1.63709, 1.637255, 1.63738, 1.64403, 1.642545, 1.650745, 1.65183, 1.64764, 1.646825, 1.639945, 1.634085, 1.633615, 1.631255, 1.63123, 1.62993, 1.628745, 1.629105, 1.63096, 1.63417, 1.635245, 1.634745, 1.633755, 1.63316, 1.633325, 1.63464, 1.63394, 1.635555, 1.636435, 1.636235, 1.63692, 1.638125, 1.63869, 1.637795, 1.6323, 1.638925, 1.640955, 1.63767, 1.63686, 1.636575, 1.63977, 1.63909, 1.63945, 1.64001, 1.641005, 1.63986, 1.63838, 1.64039, 1.64047, 1.636, 1.63434, 1.634115, 1.633895, 1.633725, 1.63255, 1.633225, 1.63228, 1.632915, 1.63046, 1.630275, 1.628565, 1.63377, 1.631165, 1.630405, 1.63149, 1.63178, 1.63308, 1.63234, 1.630675, 1.630235, 1.63027, 1.632255, 1.630505, 1.626665, 1.625325, 1.624565, 1.624355, 1.62497, 1.62389, 1.62394, 1.62399, 1.622855, 1.621865, 1.62358, 1.62292, 1.623685, 1.624135, 1.62672, 1.624515, 1.624305, 1.624215, 1.62416, 1.623665, 1.6259, 1.625805, 1.626625, 1.62005, 1.618425, 1.62162, 1.62192, 1.620865, 1.62121, 1.621525, 1.621475, 1.619475, 1.619145, 1.619835, 1.620235, 1.6204, 1.618875, 1.622535, 1.62144, 1.617695, 1.61798, 1.61831, 1.618825, 1.61982, 1.62336, 1.621535, 1.61987, 1.616985, 1.6134, 1.61441, 1.6139, 1.61428, 1.61376, 1.61498, 1.615715, 1.612955, 1.61323, 1.61406, 1.6102, 1.606695, 1.60757, 1.59774, 1.59611, 1.597425, 1.597505, 1.59687, 1.59683, 1.596235, 1.59762, 1.59792, 1.59878, 1.596685, 1.598745, 1.59928, 1.60067, 1.602755, 1.603465, 1.607645, 1.608225, 1.60736, 1.60442, 1.604255, 1.60657, 1.60907, 1.604735, 1.607615, 1.61128, 1.607135, 1.60798, 1.60935, 1.60968, 1.60865, 1.607105, 1.60607, 1.606545, 1.60638, 1.607575, 1.60701, 1.60822, 1.606605, 1.604175, 1.617025, 1.615945, 1.616205, 1.61726, 1.61868, 1.618035, 1.62082, 1.620575, 1.62089, 1.61883, 1.61219, 1.61243, 1.61167, 1.61194, 1.61212, 1.61281, 1.61193, 1.61268, 1.606455, 1.60555, 1.60459, 1.60322, 1.604705, 1.60562, 1.606145, 1.6077, 1.60683, 1.60916, 1.611945, 1.61187, 1.611335, 1.60832, 1.609145, 1.60955, 1.608575, 1.60676, 1.606755, 1.60695, 1.607395, 1.606405, 1.6076, 1.606815, 1.60695, 1.604905, 1.59545, 1.59164, 1.59162, 1.592925, 1.59173, 1.590465, 1.590475, 1.588995, 1.58925, 1.590845, 1.590575, 1.589605, 1.59287, 1.59246, 1.597345, 1.596035, 1.591425, 1.59756, 1.60024, 1.59879, 1.600055, 1.598305, 1.597, 1.59925, 1.596045, 1.598845, 1.600635, 1.606405, 1.60702, 1.609275, 1.607365, 1.609575, 1.60851, 1.60739, 1.607985, 1.60689, 1.60864, 1.61119, 1.606205, 1.60851, 1.61039, 1.6088, 1.609185, 1.609595, 1.609035, 1.609775, 1.61074, 1.61063, 1.61041, 1.612855, 1.612635, 1.61363, 1.613635, 1.61695, 1.61705, 1.615905, 1.615515, 1.61577, 1.617205, 1.618045, 1.616225, 1.61466, 1.61568, 1.61528, 1.613335, 1.613045, 1.611435, 1.61178, 1.611265, 1.612395, 1.612615, 1.61215, 1.607975, 1.604285, 1.60507, 1.60358, 1.606845, 1.606225, 1.605045, 1.60427, 1.60436, 1.604135, 1.60491, 1.60554, 1.603425, 1.60145, 1.602715, 1.602035, 1.603575, 1.60334, 1.602125, 1.602895, 1.602555, 1.60353, 1.603785, 1.60398, 1.603185, 1.60395, 1.605205, 1.608145, 1.6097, 1.608285, 1.60858, 1.609015, 1.608575, 1.609035, 1.61034, 1.61067, 1.61045, 1.610075, 1.609925, 1.609565, 1.61126, 1.61328, 1.612295, 1.61265, 1.611675, 1.61242, 1.61272, 1.61275, 1.61212, 1.612105, 1.610675, 1.611365, 1.617255, 1.61567, 1.613815, 1.61384, 1.613175, 1.61411, 1.6132, 1.613675, 1.61394, 1.613675, 1.612405, 1.61159, 1.61244, 1.6149, 1.609405, 1.600625, 1.60129, 1.600285, 1.597765, 1.59804, 1.597085, 1.59792, 1.598775, 1.598545, 1.60051, 1.602205, 1.599575, 1.599565, 1.600345, 1.59987, 1.599305, 1.599525, 1.597605, 1.599295, 1.59902, 1.600385, 1.59634, 1.59984, 1.599365, 1.599665, 1.59966, 1.597265, 1.593855, 1.59653, 1.59713, 1.59792, 1.59974, 1.60036, 1.599825, 1.598095, 1.598495, 1.59798, 1.597485, 1.59773, 1.597355, 1.5986, 1.599495, 1.599755, 1.60003, 1.600025, 1.600375, 1.60105, 1.598955, 1.600155, 1.599765, 1.600475, 1.60022, 1.6006, 1.60181, 1.596045, 1.5943, 1.588815, 1.59068, 1.596245, 1.59832, 1.59755, 1.59771, 1.59605, 1.595625, 1.59563, 1.597925, 1.599085, 1.59813, 1.594745, 1.593165, 1.592695, 1.586095, 1.58439, 1.583355, 1.583495, 1.58396, 1.58395, 1.58188, 1.58351, 1.58259, 1.583445, 1.582, 1.58423, 1.584275, 1.58594, 1.58744, 1.58719, 1.588185, 1.58738, 1.589525, 1.590055, 1.59015, 1.588425, 1.590905, 1.589435, 1.587295, 1.585705, 1.585945, 1.584915, 1.584655, 1.585055, 1.585295, 1.58395, 1.58466, 1.584475, 1.58468, 1.585585, 1.586555, 1.588415, 1.59241, 1.591835, 1.591695, 1.590885, 1.591405, 1.590985, 1.591665, 1.592275, 1.5882, 1.581655, 1.580375, 1.58148, 1.57864, 1.578555, 1.57667, 1.577125, 1.577305, 1.57743, 1.577365, 1.577185, 1.57641, 1.574255, 1.57483, 1.57164, 1.570785, 1.57102, 1.5706, 1.568675, 1.567595, 1.56684, 1.56692, 1.56813, 1.567345, 1.565315, 1.560175, 1.565545, 1.568455, 1.567155, 1.566805, 1.566615, 1.567495, 1.57258, 1.572635, 1.571035, 1.56638, 1.56362, 1.564205, 1.56323, 1.564425, 1.56413, 1.564065, 1.56356, 1.56443, 1.565565, 1.565335, 1.565155, 1.56566, 1.565865, 1.564555, 1.564785, 1.564695, 1.56344, 1.5631, 1.56226, 1.561195, 1.56147, 1.560665, 1.562395, 1.56057, 1.56928, 1.566655, 1.56624, 1.566875, 1.56932, 1.56767, 1.56817, 1.567015, 1.567355, 1.56741, 1.56635, 1.565175, 1.566865, 1.570025, 1.57282, 1.56816, 1.570325, 1.56959, 1.56924, 1.56901, 1.570075, 1.569705, 1.56823, 1.56393, 1.56667, 1.56727, 1.56499, 1.56707, 1.564855, 1.566205, 1.56555, 1.564845, 1.565205, 1.56587, 1.56643, 1.56677, 1.564145, 1.56529, 1.56839, 1.568565, 1.569955, 1.569735, 1.570485, 1.57035, 1.569595, 1.568, 1.567995, 1.568395, 1.56889, 1.567615, 1.56646, 1.57027, 1.57135, 1.57154] 

Commenti

  • Benvenuto in CodeReview.SE! Saresti in grado di fornire dati fittizi in modo da poter provare il tuo codice prima di esaminarlo?
  • Ciao Josay, io ' ho aggiunto un elenco di dati di esempio per te se ' desideri eseguire il test.

Risposta

  • La ricorsione è un buon strumento per il lavoro giusto, ma qui viene utilizzata per eseguire cicli semplici. Come tale il codice .. .
    • è più difficile da leggere e ragionare.
    • è più lento perché gran parte del codice in ema deve essere eseguito solo una volta.
    • fallirà con un valore abbastanza grande di window a causa di o che scorre lo stack di chiamate di Python.
  • Per favore documenta almeno i parametri di ogni funzione, ad es. che window è la lunghezza della finestra e che position conta allindietro dalla fine di data. (In effetti le cose sarebbero più chiare se position fosse un normale indice forward in data)
  • Solleva uneccezione quando scopri che un parametro ha un valore non valido. Restituire None causerà solo uneccezione più confusa in seguito. In effetti, se provo Indicators().ema(close_prices, 600) ottengo una ricorsione infinita perché sma restituisce None, che fa ema chiamare sma più e più volte.
  • Il punto precedente rivela anche che if len(data) < window + 2 non è il controllo di validità corretto.
  • Il + 1 in data[-window*2 + 1:-window + 1] non sembra corretto per me. Suppongo che tu voglia data[-window*2:-window]
  • Listruzione return previous_ema è in un posto strano perché a quel punto hai calcolato un nuovo current_ema. Questo è il caso base della ricorsione ed è consuetudine gestire prima il caso base.

Il mio proposta per ema:

def ema(self, data, window): if len(data) < 2 * window: raise ValueError("data is too short") c = 2.0 / (window + 1) current_ema = self.sma(data[-window*2:-window], window) for value in data[-window:]: current_ema = (c * value) + ((1 - c) * current_ema) return current_ema 

Risposta

Recensione piuttosto superficiale:

Non hai bisogno di scrivere una lezione per quello che stai facendo (e ti suggerisco di dare unocchiata a questo video ). La tua classe non incapsula alcun dato e lo usi semplicemente per avere le tue funzioni in una stessa entità. Immagino che le cose sarebbero più facili da capire se dovessi definire classmethod per rendere ovvio che non ti affidi davvero a nessuna istanza. Tuttavia, unopzione ancora migliore sarebbe quella di definire le funzioni in un modulo indicator.

Commenti

  • Grazie per i suggerimenti! loro come metodi di lezione e dibattuto andando avanti e indietro anche tra lutilizzo di una classe o la definizione di funzioni in un modulo indicatore (cosa che ora farò).
  • Ho appena guardato anche il video, grandi cose.

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *