Ik heb het waarschuwingsbericht in de titel ontvangen en heb dergelijke berichten beoordeeld zoals bijvoorbeeld deze .

Ik zou graag willen begrijpen hoe deze functie een perfecte scheiding heeft met de doelvariabele, aangezien ik er gewoon van uitging dat dit een soort waarschuwing zou meer verband houden met categorische kenmerken, waarbij een bepaald niveau de volledige of valse doelklasse heeft.

De context is websiteconversie (transactie doet een aankoop True = X1 of niet = False X0 ). Ik wilde de impact van de gemiddelde laadtijd van een pagina voor een bepaalde websitesessie begrijpen. Na het verwijderen van andere functies, zoals het apparaattype en de verkeersbron, heb ik ontdekt dat ik de waarschuwing alleen ontvang met de functie Avg_Load_Time, wat een numeriek (dbl) is functie.

Mijn volgende gedachte was dat misschien al die sessies met een gemiddelde laadtijd van 0 perfect se paration maar ik heb geen nullen, slechts enkele dicht bij 0:

> summary(x$Avg_Load_Time) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.24 2.32 4.27 10.18 8.73 484.62 

Ik keek toen naar een samenvatting van de gemiddelde laadtijd alleen voor die sessies met een transactie, waar doelwit dus X1 is:

> summary(y %>% filter(target == "X1") %>% select(Avg_Load_Time)) Avg_Load_Time Min. : 0.780 1st Qu.: 2.478 Median : 3.785 Mean : 4.253 3rd Qu.: 4.815 Max. :16.410 

Ik kan hier zien dat, hoewel het minimum hoger is, het niet 0 is.

Hoe kan ik de oorzaak van mijn perfecte scheiding vinden, aangezien ik “het heb teruggebracht tot een enkele functie?

Hier is een voorbeeld van 1000 als het helpt. Alle tips voor het begrijpen van mijn scheiding worden gewaardeerd:

dput(x %>% sample_n(1000)) structure(list(target = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("X0", "X1"), class = "factor"), Avg_Load_Time = c(0.77, 39.1, 5.34, 5.45, 1.74, 2.18, 9.19, 4.73, 9.37, 2.45, 4.33, 1.86, 1.93, 4.32, 18.13, 6.93, 3.57, 13.93, 130.38, 4.47, 26.67, 14.48, 19.54, 9.41, 6.51, 3.78, 1.91, 2.98, 5.47, 2.24, 3.07, 27.9, 8.8, 65.66, 10.23, 3.32, 1.81, 5.02, 2.71, 1.04, 11.76, 5.73, 2.32, 3.54, 2.3, 63.9, 4.5, 0.78, 1.44, 4.06, 0.7, 1.79, 7.7, 4.3, 33.25, 1.44, 0.79, 6.39, 4.17, 0.6, 3.58, 16.84, 11.07, 16.05, 28.29, 9.22, 4.1, 7.81, 0.55, 64.88, 3.32, 10.44, 3.22, 1.57, 1.01, 7.16, 3.41, 5.74, 3.73, 2.62, 4.39, 17.92, 5.05, 1.94, 6.95, 1.86, 27.07, 7.69, 4.05, 2.96, 8.03, 3.21, 5.33, 1.62, 17.03, 8.37, 1.7, 5.08, 4.96, 0.83, 4.65, 16.36, 7.04, 4.9, 22.98, 6.08, 4.3, 2.91, 1.52, 1.81, 11.28, 16.71, 4.17, 9.62, 3.18, 2.66, 0.78, 9.3, 25.39, 5.84, 1.13, 58.03, 1.45, 10.45, 19.5, 1.25, 1.06, 30.49, 2.9, 7.31, 3.61, 4.64, 0.68, 10.43, 8.84, 1.78, 17.16, 6.68, 4.61, 7.43, 5.03, 2.98, 2.89, 4.15, 9.47, 3.68, 2.16, 2.09, 41.78, 3.06, 113.4, 30.13, 5.37, 14.83, 2.1, 2.03, 13.51, 3.1, 5.54, 4.61, 18.09, 23.82, 34.64, 4.99, 8.35, 7.45, 3.98, 3.44, 1.01, 34.45, 64.03, 2.82, 13.63, 13.34, 0.66, 4.15, 2.06, 19.7, 1.38, 2.16, 10.65, 5.89, 57.27, 17.51, 3.5, 10.97, 2.2, 9.38, 2.06, 5.25, 4.11, 72.22, 0.93, 3.65, 5.71, 4.79, 3.01, 0.95, 6.6, 15.35, 1.05, 3.31, 3.44, 8.31, 11.35, 6.63, 4.87, 4.83, 10.05, 1.01, 25.35, 3.79, 11.14, 24.26, 9.71, 1.76, 3.75, 1.66, 7.02, 6.41, 3.72, 3.58, 35.16, 3.24, 2.29, 9.61, 9.31, 0.67, 0.63, 7.08, 10.85, 2.65, 4.35, 5.86, 3.24, 4.32, 3.34, 2.37, 4.23, 1.97, 1.83, 15.42, 4.17, 5.18, 2.37, 8.91, 0.71, 20.18, 5.96, 1.41, 3.11, 26.85, 2.47, 5.99, 2.53, 1.86, 2.67, 13.66, 8.28, 5.7, 8.1, 3.95, 139.35, 15.37, 2.55, 2.85, 5.46, 2.55, 17.16, 2.87, 23.42, 1.58, 62.58, 7.5, 14.41, 1.57, 4.42, 5.41, 4.62, 12.5, 3.3, 4.37, 3.91, 3.35, 7.27, 1.11, 24.86, 18, 8.83, 7.87, 2.68, 2.77, 32.58, 12.66, 2.64, 9.89, 30.86, 10.17, 3.49, 37.99, 4.99, 12.98, 1.75, 11.92, 45.36, 3.35, 2.28, 2.83, 19.92, 9.33, 4.98, 19.76, 2.92, 3.84, 4.8, 205.98, 4.53, 8.82, 3.74, 21.8, 3.56, 3.9, 2.29, 7.85, 79.96, 3.56, 2.78, 5.9, 2.93, 3.76, 1.79, 12.94, 2.34, 25.17, 22.71, 4.15, 6.87, 147.62, 6.1, 3.23, 93.41, 12.91, 4.93, 3.22, 5.84, 8.73, 17.73, 79.63, 182.45, 2.36, 1.62, 1.22, 1.09, 3.75, 0.93, 1.82, 12.14, 4.38, 2.1, 0.88, 4.36, 1.33, 3.74, 2.85, 2.34, 13.2, 5.44, 9.94, 6.6, 2.79, 7.7, 10.99, 11.43, 19.7, 3.79, 2.26, 1.68, 23.24, 7.41, 3.13, 5.22, 2.4, 4.48, 2.35, 10.36, 1.25, 34.14, 7.37, 3.46, 18.84, 8.32, 4.9, 2.37, 1.03, 4.56, 9.7, 20.95, 1.01, 17.42, 9.29, 0.88, 3.84, 13.82, 0.52, 4.51, 11.74, 1, 6.28, 5.49, 6.13, 5.62, 0.53, 6.72, 2.08, 3.38, 68.72, 4.56, 2.45, 15.21, 5.54, 5.13, 3.86, 4.89, 1.21, 3.88, 4.83, 4.97, 8.22, 5.76, 4.07, 6.83, 1.94, 120.71, 3.26, 7.38, 4.21, 5.95, 3.7, 1.28, 3.43, 1.42, 1.63, 3.97, 10.57, 8.98, 2.37, 21.73, 8.04, 5.18, 2.48, 5.74, 4.65, 1.85, 6.75, 0.98, 1.72, 4, 6.08, 7.21, 8, 10.98, 1.94, 0.75, 30.3, 7.29, 3.31, 4.3, 66.62, 3.87, 3.01, 1.56, 3.37, 5.44, 6.76, 6.21, 1.39, 8.02, 2.95, 9.56, 1.62, 2.28, 0.46, 2, 12.55, 4.66, 15.48, 1.76, 5.81, 1.94, 4.25, 2.65, 1.51, 2.7, 27.43, 46.24, 2.67, 16.77, 0.7, 0.4, 6.07, 11.3, 1.49, 3.45, 3.2, 22.74, 1.5, 0.7, 2.6, 7.89, 2.57, 3.42, 2.46, 1.7, 2.45, 2.12, 7.97, 9.4, 3.58, 7.2, 12.18, 15.27, 2.94, 5.19, 7.33, 7.54, 5.01, 5.08, 10.65, 16.13, 2.46, 5.28, 3.02, 2.82, 10.84, 0.53, 4.22, 3.51, 10.69, 4.31, 2.55, 7.58, 19.3, 4.97, 9.39, 1.66, 0.45, 2.71, 0.82, 0.7, 8.76, 21.98, 1.95, 1.09, 3.78, 2.71, 2.55, 1.69, 17.2, 6.37, 11.42, 2.33, 0.98, 52.6, 1.67, 1.32, 21.99, 34.11, 4.99, 4.52, 6.84, 2.45, 0.7, 1.16, 9.52, 21.73, 2.32, 5.26, 7.34, 3.55, 2.6, 4.29, 9.48, 0.48, 7.22, 1.94, 4.25, 6.62, 6.76, 3.39, 1.67, 3.81, 38.39, 3.49, 65.29, 3.59, 11.54, 1.87, 4.21, 6.6, 7.3, 8.97, 9.82, 2.65, 4.99, 2.03, 4.81, 3.08, 6.41, 1.29, 1.04, 3.53, 1.29, 4.07, 2.92, 2.91, 3.82, 4.94, 2.25, 10.05, 8.87, 1.51, 3.26, 3.4, 0.68, 7.64, 0.6, 0.78, 6.25, 2.89, 17.56, 4.83, 5.55, 9.6, 3.31, 2.43, 6.96, 5.05, 5.95, 6.96, 15.06, 45.99, 1.74, 3.48, 1.83, 2.76, 6.35, 24.95, 1.96, 2.23, 2.23, 17.25, 5.2, 12.57, 11.58, 10.85, 2.91, 1.1, 3.2, 6.4, 3.15, 5.55, 1.72, 2.34, 1.83, 49.76, 1.87, 5.72, 3.59, 0.81, 8.8, 6.76, 2.06, 3.15, 9.06, 15.15, 1.64, 4.92, 9.64, 3.7, 1.78, 1.88, 3.98, 4.93, 3.37, 10.57, 4.41, 4.67, 6.39, 3.51, 21.83, 2.33, 0.68, 1.66, 2.89, 4.57, 360.7, 5.89, 6.63, 8.59, 0.48, 8.08, 2.01, 1.59, 12.45, 0.99, 2.3, 2.79, 1.47, 2.78, 2.05, 3.12, 17.84, 185.53, 3.71, 0.8, 1.82, 12.42, 31.16, 2.27, 19.23, 1.48, 7.22, 0.24, 11.73, 1.25, 14.06, 11.55, 1.48, 1.73, 5.01, 1.66, 2.25, 3.26, 6.73, 4.66, 1.8, 5.25, 8.15, 3.94, 2.72, 1.69, 25.96, 4.46, 1.51, 1.61, 1.67, 2.16, 5.24, 22.86, 3.64, 10.68, 4.65, 0.62, 0.64, 7.69, 3.63, 37.52, 9.98, 3.27, 10.94, 1.92, 2.4, 1.04, 6.05, 5.34, 3.4, 4.08, 72.08, 3.95, 5.1, 1.44, 17.06, 2.14, 4.17, 3.39, 7.79, 5.71, 19.87, 2.54, 2.49, 3.44, 3.85, 12.06, 12.18, 1.7, 3.12, 17.3, 4.41, 4.4, 0.82, 57.91, 124.91, 5.35, 5.41, 20.75, 13.54, 0.82, 0.84, 8.62, 10.04, 1.08, 10.49, 7.05, 2.72, 1.18, 2.05, 6.87, 3.51, 20.66, 4.69, 31.9, 4.64, 6.04, 1.71, 6.91, 70.11, 2.83, 9.88, 2, 10.48, 4.25, 12.24, 1.27, 50.22, 0.85, 3.51, 5.47, 0.69, 1.45, 2.97, 1.58, 2.2, 6.79, 15.88, 3.52, 1.75, 18.68, 3.81, 2.87, 4.06, 69.44, 91.15, 0.79, 1.15, 6.57, 1.18, 4.33, 7.3, 42.46, 40.83, 6.48, 32.34, 3.16, 41.11, 4.61, 1.57, 2.22, 1.2, 2.35, 10.48, 6.82, 5.38, 5.51, 3.34, 57.3, 51.9, 10.52, 1.85, 3.37, 4.42, 1.09, 29.53, 1.76, 2.48, 2.54, 10.22, 11.62, 59.79, 176.17, 7.18, 4.36, 1.76, 7.34, 4.55, 8.21, 3.94, 9.64, 1.62, 19.5, 5.53, 5.28, 1.59, 43.85, 24.02, 5.95, 6.34, 4.54, 3.71, 1.48, 9.18, 5.56, 6.08, 15.67, 24.48, 0.8, 12.53, 4.14, 29.11, 19.85, 2.54, 92.42, 44.65, 8.07, 2.44, 3.93, 3.79, 13.65, 17.64, 3.67, 9.42, 3.43, 1.81, 11.76, 1.63, 4.27, 5.87, 11.66, 3.77, 1.62, 3.58, 15.66, 4.46, 8.12, 7.35, 8.62, 6.24, 4.28, 1.68, 3.93, 3.27, 2.67, 2.93, 161.22, 3.54, 2.62, 40.6, 1.09, 2.3, 9.57, 1.1, 3.33, 17.41, 7.63, 4.01, 16.9, 3.8, 2.8, 3.56, 2.51, 6.26, 1.84, 2.98, 4.92, 2.12, 6.35, 11.74, 2.64, 14.35, 452.01, 1.7, 1.91, 4.79, 2.49, 7.61, 1.54, 8.19, 7.95, 2.81, 7.08, 9.06, 5.17, 2.08, 7.92, 4.39, 22.12, 3.42, 3.82, 3.17, 17.41, 3.29, 10.66, 31.54, 3.62, 26.38, 3.43, 10.32, 1.32, 10.71, 2.75, 0.95)), row.names = c(6184L, 2551L, 2196L, 1039L, 2202L, 2513L, 6486L, 916L, 4414L, 2131L, 4485L, 48L, 4451L, 428L, 82L, 2537L, 3385L, 862L, 1963L, 4647L, 5071L, 2291L, 2995L, 3809L, 2285L, 1515L, 327L, 3483L, 65L, 3061L, 3869L, 3477L, 3101L, 2373L, 2719L, 3135L, 4565L, 1753L, 3063L, 6430L, 6003L, 2311L, 4421L, 1644L, 4624L, 3624L, 5539L, 5660L, 6346L, 2726L, 1827L, 4540L, 1783L, 6390L, 3L, 5930L, 4033L, 389L, 4441L, 4337L, 5426L, 4693L, 1528L, 1651L, 1031L, 6197L, 1658L, 1607L, 3984L, 169L, 5577L, 3275L, 4969L, 2540L, 4156L, 6473L, 5848L, 3533L, 3060L, 3899L, 1891L, 4948L, 6339L, 3585L, 720L, 4000L, 1086L, 145L, 1657L, 3040L, 3259L, 201L, 6284L, 40L, 4519L, 3823L, 3223L, 5009L, 5800L, 5318L, 6275L, 1786L, 2839L, 6337L, 1608L, 209L, 5153L, 6367L, 4579L, 354L, 4555L, 5648L, 4864L, 5039L, 1677L, 6116L, 5098L, 1642L, 4770L, 2200L, 6191L, 3071L, 450L, 3636L, 4081L, 2510L, 5294L, 1727L, 2803L, 2432L, 1601L, 3750L, 1342L, 1631L, 4963L, 5250L, 1706L, 4321L, 2363L, 5493L, 1785L, 1871L, 4915L, 3863L, 2609L, 3569L, 5090L, 6215L, 776L, 5994L, 3678L, 2258L, 2520L, 5860L, 4978L, 571L, 1565L, 4433L, 2162L, 4047L, 4313L, 6357L, 4122L, 5517L, 6401L, 709L, 2926L, 3962L, 5218L, 3417L, 4282L, 6511L, 4401L, 308L, 6254L, 2895L, 1322L, 3314L, 1255L, 3496L, 2530L, 1512L, 2848L, 4397L, 6493L, 4089L, 2933L, 3121L, 5843L, 4478L, 2383L, 799L, 3954L, 1881L, 6246L, 6538L, 5655L, 3924L, 6358L, 598L, 6321L, 2812L, 1495L, 2279L, 1566L, 1571L, 3243L, 3463L, 3446L, 4494L, 5554L, 2408L, 3205L, 1415L, 503L, 4475L, 2991L, 6206L, 3917L, 3783L, 579L, 4765L, 5490L, 2332L, 3855L, 334L, 279L, 4344L, 2040L, 3374L, 5118L, 5522L, 943L, 1384L, 4601L, 4265L, 1661L, 4688L, 4689L, 4901L, 5189L, 3486L, 5768L, 2838L, 1224L, 5894L, 797L, 64L, 5550L, 71L, 4872L, 3641L, 4625L, 3234L, 4074L, 4193L, 4694L, 4910L, 6064L, 711L, 5573L, 2679L, 435L, 3532L, 1943L, 5559L, 3315L, 3558L, 1329L, 3639L, 1315L, 3333L, 1385L, 969L, 4171L, 4913L, 6416L, 3509L, 1493L, 3441L, 4746L, 5616L, 4951L, 3169L, 4749L, 831L, 2960L, 1296L, 16L, 2343L, 1135L, 3011L, 1561L, 2271L, 6274L, 174L, 3444L, 6017L, 3905L, 2256L, 6176L, 2010L, 4810L, 390L, 1249L, 2519L, 5377L, 6018L, 5639L, 5085L, 2620L, 5812L, 4687L, 1585L, 1728L, 2769L, 3270L, 4024L, 4315L, 423L, 1338L, 2607L, 4817L, 2097L, 870L, 6315L, 904L, 2440L, 4453L, 361L, 57L, 499L, 592L, 261L, 2635L, 2813L, 529L, 2855L, 5575L, 2611L, 577L, 2758L, 4659L, 3844L, 460L, 5323L, 1192L, 2380L, 272L, 381L, 4215L, 1872L, 5269L, 4364L, 897L, 5692L, 147L, 1357L, 5217L, 5735L, 300L, 6237L, 2495L, 105L, 446L, 2340L, 998L, 4142L, 612L, 6281L, 1582L, 1222L, 1890L, 166L, 1640L, 5590L, 58L, 3018L, 142L, 3891L, 3186L, 4745L, 299L, 4523L, 5641L, 784L, 1204L, 1686L, 1584L, 3400L, 2020L, 1845L, 1339L, 2362L, 3775L, 4993L, 3140L, 6136L, 3744L, 3660L, 4153L, 2724L, 2882L, 606L, 4553L, 2163L, 1866L, 6542L, 3836L, 439L, 1593L, 4147L, 1863L, 1478L, 1836L, 5330L, 2317L, 6407L, 4020L, 6340L, 5530L, 4834L, 4014L, 5586L, 6277L, 1131L, 4902L, 1407L, 5960L, 6548L, 5643L, 4351L, 905L, 4831L, 1502L, 619L, 4279L, 6394L, 128L, 2750L, 933L, 2526L, 4238L, 3399L, 659L, 1480L, 2368L, 2682L, 5147L, 6000L, 416L, 1817L, 5850L, 2734L, 4140L, 6131L, 6076L, 5482L, 5680L, 2259L, 2351L, 4757L, 4151L, 289L, 859L, 5292L, 5635L, 1138L, 3254L, 798L, 2505L, 4556L, 1551L, 3940L, 4871L, 5242L, 418L, 6498L, 260L, 5817L, 4388L, 4007L, 3834L, 5505L, 5628L, 6338L, 761L, 5450L, 5683L, 285L, 6111L, 5526L, 3037L, 4L, 2593L, 3748L, 1503L, 4305L, 3995L, 2808L, 5340L, 723L, 5026L, 3815L, 780L, 5079L, 4068L, 819L, 5578L, 5309L, 5343L, 4748L, 5907L, 6230L, 750L, 4398L, 1132L, 608L, 6299L, 42L, 5876L, 3563L, 2357L, 4928L, 4651L, 3820L, 6556L, 2657L, 1072L, 6177L, 5854L, 1055L, 3019L, 3226L, 1947L, 2649L, 2658L, 3980L, 4411L, 4809L, 5374L, 6171L, 2297L, 4886L, 1136L, 3304L, 5831L, 6033L, 3996L, 5566L, 2274L, 5844L, 4357L, 4184L, 3931L, 1742L, 1906L, 584L, 1180L, 5983L, 2034L, 3948L, 2299L, 1073L, 4888L, 2482L, 5282L, 1443L, 2127L, 4934L, 4823L, 5775L, 1885L, 1196L, 148L, 6078L, 6388L, 6283L, 6387L, 4507L, 2845L, 6058L, 3802L, 6417L, 6221L, 2099L, 5433L, 2409L, 4856L, 4206L, 6222L, 2927L, 2702L, 456L, 4939L, 4571L, 5468L, 5040L, 2424L, 5272L, 6453L, 5051L, 4724L, 5896L, 2916L, 1310L, 5210L, 5510L, 646L, 5657L, 814L, 6170L, 676L, 6462L, 5444L, 1140L, 5464L, 5277L, 845L, 4103L, 6037L, 3394L, 5133L, 4308L, 6330L, 3808L, 3992L, 5485L, 3267L, 2779L, 1673L, 3759L, 540L, 63L, 3328L, 5014L, 6502L, 1702L, 183L, 2793L, 1387L, 1509L, 1104L, 6117L, 2521L, 1616L, 1915L, 5086L, 2052L, 980L, 1808L, 3238L, 1065L, 3380L, 5700L, 627L, 5914L, 2915L, 3048L, 3623L, 1123L, 6095L, 1816L, 5820L, 4345L, 834L, 4729L, 4228L, 4196L, 4470L, 1279L, 5591L, 1570L, 2116L, 4849L, 4395L, 226L, 476L, 1626L, 5747L, 3529L, 2431L, 1781L, 6031L, 2284L, 3319L, 1572L, 258L, 3268L, 3450L, 1602L, 6434L, 5241L, 3211L, 1457L, 973L, 5836L, 4221L, 5546L, 511L, 1494L, 4660L, 4740L, 6022L, 3065L, 4671L, 1235L, 4859L, 5285L, 6085L, 1835L, 246L, 3957L, 2888L, 6273L, 4354L, 6334L, 1819L, 5608L, 5737L, 2086L, 1058L, 2646L, 816L, 4892L, 962L, 6487L, 2038L, 4419L, 5027L, 1894L, 3495L, 587L, 3206L, 2829L, 4782L, 3643L, 1092L, 4123L, 5749L, 2676L, 2893L, 3014L, 38L, 1912L, 5211L, 2243L, 4058L, 1213L, 2605L, 2442L, 1232L, 5918L, 4185L, 3302L, 1337L, 6362L, 5555L, 307L, 2301L, 2233L, 937L, 3907L, 5225L, 5638L, 975L, 2251L, 1050L, 1491L, 6382L, 5216L, 2451L, 5973L, 5968L, 5662L, 502L, 5915L, 2422L, 4802L, 3790L, 3299L, 2436L, 2277L, 2446L, 1261L, 6100L, 3587L, 2741L, 1789L, 3988L, 2954L, 673L, 5694L, 2920L, 3473L, 578L, 5383L, 3635L, 2474L, 4929L, 2527L, 2379L, 2749L, 2919L, 4747L, 1568L, 2770L, 3580L, 4304L, 5181L, 463L, 3725L, 3582L, 6360L, 3340L, 3527L, 2487L, 5010L, 4628L, 3698L, 3776L, 1653L, 1242L, 755L, 6249L, 4548L, 4715L, 2907L, 3603L, 5111L, 3679L, 4719L, 5415L, 3942L, 3701L, 5062L, 6464L, 3886L, 4970L, 5863L, 4053L, 3203L, 2152L, 5063L, 558L, 4078L, 1168L, 3739L, 1542L, 3839L, 3160L, 6303L, 2109L, 1773L, 5431L, 2239L, 4065L, 4771L, 6126L, 478L, 1101L, 4449L, 889L, 1234L, 2784L, 1710L, 453L, 1939L, 4598L, 5976L, 3052L, 2723L, 1453L, 144L, 1011L, 347L, 2381L, 5726L, 1098L, 3801L, 2205L, 5924L, 5627L, 4158L, 1323L, 2716L, 6020L, 5811L, 2453L, 2576L, 1343L, 1320L, 599L, 4175L, 2525L, 4167L, 728L, 2376L, 3965L, 5238L, 3838L, 5333L, 6010L, 3692L, 6235L, 1547L, 6061L, 4914L, 523L, 6040L, 3971L, 5140L, 470L, 6180L, 5213L, 1000L, 5703L, 464L, 17L, 2573L, 2548L, 4077L, 6232L, 4488L, 4627L, 2826L, 5015L, 4984L, 1940L, 6304L, 1287L, 4968L, 4008L, 4960L, 6471L, 3094L, 2265L, 3780L, 5842L, 1355L, 4387L, 1961L, 3508L, 5247L, 1715L, 4510L, 2579L, 5276L, 1884L, 2056L, 572L, 4258L, 5438L, 3359L, 4644L, 2303L, 322L, 5600L, 688L, 569L, 1143L, 4504L, 1109L, 2366L, 2628L, 513L, 6001L, 3407L, 5020L, 1613L, 5690L, 5180L, 4863L, 2050L, 2599L, 2516L, 3648L, 2714L, 4472L, 5454L, 2338L, 3966L, 903L, 1241L, 2971L, 4947L, 4792L, 3717L, 3221L, 5182L, 1006L, 6137L, 2480L, 1403L, 3797L, 5872L, 4249L, 195L, 6063L, 1898L), class = "data.frame") 

Bewerken: hier is de volledige code die ik verzoek om het model uit te voeren:

library(caret) ## custom evaluation metric function my_summary <- function(data, lev = NULL, model = NULL){ a1 <- defaultSummary(data, lev, model) b1 <- twoClassSummary(data, lev, model) c1 <- prSummary(data, lev, model) out <- c(a1, b1, c1) out} ## tuning & parameters set.seed(123) train_control <- trainControl( method = "cv", number = 5, savePredictions = TRUE, verboseIter = TRUE, classProbs = TRUE, summaryFunction = my_summary ) linear_model = train( x = select(training_data, Avg_Load_Time), y = target, trControl = train_control, method = "glm", # logistic regression family = "binomial", metric = "AUC" ) 

Nadat ik dit heb uitgevoerd, krijg ik het waarschuwingsbericht.

Opmerkingen

  • Wat is het volledige model dat u past? Heeft het een wisselwerking met andere variabelen? En hoe weet je dat ' s deze functie het probleem veroorzaakt?
  • @Glen Ik heb dit nu aan het bericht toegevoegd.
  • Krijgt u de foutmelding als u de volledige dataset aanpast zonder de CV / training? Lijkt op zeer onevenwichtige klassen en ik vraag me af of sommige folds slechts 1 of zelfs 0 hebben in de kleinere klasse. Heb je geprobeerd de selectie van vouwen per klasse te stratificeren om ervoor te zorgen dat elke vouw genoeg heeft van de kleinere klasse?
  • @EdM " Heb je geprobeerd de selectie van vouwt per klasse om ervoor te zorgen dat elke vouw genoeg heeft van de kleinere klasse " – Hoe zou ik dat doen?

Antwoord

Ik heb naar je gegevens gekeken en ze zijn extreem scheef met uitschieters. Je hebt dus geen perfecte scheiding, maar de waarschuwing doet zich voor omdat sommige van de extreme waarnemingen waarschijnlijkheden hebben voorspeld die niet te onderscheiden zijn van 1.

Als je het model in het logboek van avg_load_time aanpast, krijg je de fout niet (ik testte dit op uw voorbeeldgegevens).

Dit antwoord legt uit wat “er goed aan de hand is: Probleem met volledige scheiding in logistieke regressie (in R)

Geef een reactie

Het e-mailadres wordt niet gepubliceerd. Vereiste velden zijn gemarkeerd met *