Jeg er i færd med at oprette en forex handelsalgoritme og ville prøve mit skud til beregning af EMA (eksponentiel glidende gennemsnit) Mine resultater ser ud til at være korrekte (sammenlignet med de beregninger, jeg har foretaget i hånden), så jeg tror, at følgende metode fungerer, men ville bare få et ekstra sæt øjne til at sikre, at jeg ikke går glip af noget.

Bemærk, at dette bare returnerer EMA til den nyeste pris, det returnerer ikke en matrix med EMA, da det ikke er det, jeg har brug for til min applikation.

I bruger dette link som reference: Eksponentielt glidende gennemsnit

class Indicators: def sma(self, data, window): """ Calculates Simple Moving Average http://fxtrade.oanda.com/learn/forex-indicators/simple-moving-average """ if len(data) < window: return None return sum(data[-window:]) / float(window) def ema(self, data, window, position=None, previous_ema=None): """ Calculates Exponential Moving Average http://fxtrade.oanda.com/learn/forex-indicators/exponential-moving-average """ if len(data) < window + 2: return None c = 2 / float(window + 1) if not previous_ema: return self.ema(data, window, window, self.sma(data[-window*2 + 1:-window + 1], window)) else: current_ema = (c * data[-position]) + ((1 - c) * previous_ema) if position > 0: return self.ema(data, window, position - 1, current_ema) return previous_ema # Sample close prices for GBP_USD currency pair on the 2 hour timeframe close_prices = [1.682555, 1.682545, 1.682535, 1.682655, 1.682455, 1.682685, 1.68205, 1.683245, 1.68405, 1.68401, 1.68506, 1.685825, 1.685955, 1.686595, 1.686325, 1.686375, 1.68701, 1.684995, 1.687245, 1.686135, 1.686205, 1.68724, 1.68753, 1.687775, 1.688245, 1.687745, 1.68699, 1.687285, 1.686325, 1.686295, 1.683945, 1.683035, 1.68401, 1.68327, 1.685185, 1.684755, 1.685265, 1.685325, 1.68625, 1.685645, 1.684355, 1.68387, 1.68413, 1.68416, 1.683425, 1.68481, 1.683245, 1.683645, 1.68325, 1.682745, 1.680385, 1.680655, 1.680875, 1.679995, 1.680445, 1.68064, 1.67937, 1.677735, 1.67769, 1.67777, 1.677525, 1.677435, 1.67766, 1.677835, 1.678005, 1.67823, 1.67902, 1.678605, 1.678425, 1.67876, 1.678555, 1.678505, 1.679085, 1.678755, 1.678125, 1.677495, 1.67677, 1.676205, 1.67716, 1.67741, 1.677135, 1.679295, 1.68054, 1.68143, 1.68115, 1.68111, 1.68055, 1.680495, 1.680565, 1.681375, 1.68244, 1.673395, 1.670885, 1.67156, 1.669525, 1.66906, 1.66903, 1.668935, 1.668805, 1.667895, 1.667905, 1.668485, 1.666345, 1.66832, 1.668005, 1.668615, 1.669305, 1.668415, 1.66891, 1.66843, 1.66855, 1.66834, 1.668725, 1.66952, 1.668075, 1.66859, 1.669, 1.669685, 1.668575, 1.66909, 1.66957, 1.669375, 1.671655, 1.67186, 1.67244, 1.6729, 1.672965, 1.673405, 1.67284, 1.67256, 1.67216, 1.67193, 1.673265, 1.67295, 1.672705, 1.67224, 1.67221, 1.67222, 1.67254, 1.670105, 1.66501, 1.663845, 1.66201, 1.661935, 1.661725, 1.66189, 1.661605, 1.661925, 1.66215, 1.66049, 1.660185, 1.66233, 1.66374, 1.66491, 1.665195, 1.663225, 1.66267, 1.65927, 1.659415, 1.65998, 1.6583, 1.656825, 1.65741, 1.659025, 1.658355, 1.659355, 1.65871, 1.65887, 1.658595, 1.65768, 1.657965, 1.657855, 1.657415, 1.658125, 1.65816, 1.659125, 1.658245, 1.65773, 1.658585, 1.65732, 1.657825, 1.65731, 1.65725, 1.65433, 1.654875, 1.65508, 1.656205, 1.656185, 1.6567, 1.658865, 1.658805, 1.65879, 1.6584, 1.65806, 1.658145, 1.65706, 1.656925, 1.65885, 1.65917, 1.659, 1.65794, 1.65797, 1.65711, 1.658675, 1.656915, 1.65474, 1.65455, 1.654135, 1.65467, 1.65473, 1.65543, 1.65465, 1.65721, 1.65717, 1.65927, 1.65895, 1.65724, 1.65812, 1.657435, 1.657395, 1.65755, 1.65975, 1.65983, 1.658975, 1.658855, 1.65814, 1.65838, 1.65797, 1.65785, 1.657795, 1.658915, 1.65888, 1.65888, 1.65869, 1.65851, 1.658195, 1.659985, 1.65933, 1.65842, 1.65836, 1.658435, 1.657605, 1.660225, 1.65991, 1.65908, 1.659065, 1.659605, 1.659555, 1.660535, 1.663025, 1.662295, 1.661525, 1.662735, 1.661335, 1.660895, 1.660905, 1.66093, 1.661425, 1.65934, 1.658235, 1.658305, 1.657035, 1.652785, 1.653185, 1.65176, 1.650105, 1.648505, 1.64713, 1.646975, 1.646815, 1.646575, 1.645355, 1.646425, 1.646365, 1.648295, 1.646245, 1.646305, 1.645075, 1.644875, 1.646035, 1.64602, 1.646025, 1.645615, 1.646135, 1.645585, 1.645695, 1.646195, 1.642865, 1.64237, 1.634805, 1.634575, 1.634475, 1.631665, 1.629265, 1.631115, 1.63094, 1.631775, 1.632175, 1.631775, 1.629345, 1.632785, 1.631155, 1.631765, 1.632865, 1.6327, 1.618735, 1.621365, 1.622655, 1.620755, 1.617995, 1.616985, 1.611595, 1.61411, 1.615785, 1.613975, 1.611155, 1.610865, 1.60935, 1.609255, 1.610085, 1.607585, 1.608405, 1.610095, 1.611495, 1.610465, 1.609775, 1.608715, 1.608615, 1.612435, 1.610495, 1.612275, 1.612555, 1.611785, 1.612515, 1.612945, 1.609495, 1.612515, 1.616155, 1.613295, 1.618215, 1.621225, 1.62018, 1.619885, 1.619565, 1.620435, 1.619375, 1.624325, 1.625165, 1.625185, 1.621845, 1.622345, 1.623795, 1.621875, 1.627455, 1.624845, 1.623875, 1.623625, 1.623295, 1.625575, 1.626125, 1.622445, 1.622145, 1.624155, 1.626055, 1.625755, 1.62671, 1.627055, 1.625875, 1.625055, 1.623925, 1.624645, 1.625215, 1.624725, 1.624025, 1.624515, 1.624205, 1.623755, 1.623325, 1.62273, 1.622535, 1.6242, 1.623045, 1.62169, 1.618415, 1.618185, 1.619605, 1.621425, 1.627035, 1.628145, 1.62778, 1.6271, 1.626485, 1.626335, 1.627615, 1.627965, 1.63094, 1.630125, 1.632065, 1.633775, 1.632895, 1.63064, 1.627885, 1.625845, 1.62667, 1.626805, 1.626695, 1.631185, 1.629635, 1.63067, 1.63367, 1.63908, 1.63709, 1.637255, 1.63738, 1.64403, 1.642545, 1.650745, 1.65183, 1.64764, 1.646825, 1.639945, 1.634085, 1.633615, 1.631255, 1.63123, 1.62993, 1.628745, 1.629105, 1.63096, 1.63417, 1.635245, 1.634745, 1.633755, 1.63316, 1.633325, 1.63464, 1.63394, 1.635555, 1.636435, 1.636235, 1.63692, 1.638125, 1.63869, 1.637795, 1.6323, 1.638925, 1.640955, 1.63767, 1.63686, 1.636575, 1.63977, 1.63909, 1.63945, 1.64001, 1.641005, 1.63986, 1.63838, 1.64039, 1.64047, 1.636, 1.63434, 1.634115, 1.633895, 1.633725, 1.63255, 1.633225, 1.63228, 1.632915, 1.63046, 1.630275, 1.628565, 1.63377, 1.631165, 1.630405, 1.63149, 1.63178, 1.63308, 1.63234, 1.630675, 1.630235, 1.63027, 1.632255, 1.630505, 1.626665, 1.625325, 1.624565, 1.624355, 1.62497, 1.62389, 1.62394, 1.62399, 1.622855, 1.621865, 1.62358, 1.62292, 1.623685, 1.624135, 1.62672, 1.624515, 1.624305, 1.624215, 1.62416, 1.623665, 1.6259, 1.625805, 1.626625, 1.62005, 1.618425, 1.62162, 1.62192, 1.620865, 1.62121, 1.621525, 1.621475, 1.619475, 1.619145, 1.619835, 1.620235, 1.6204, 1.618875, 1.622535, 1.62144, 1.617695, 1.61798, 1.61831, 1.618825, 1.61982, 1.62336, 1.621535, 1.61987, 1.616985, 1.6134, 1.61441, 1.6139, 1.61428, 1.61376, 1.61498, 1.615715, 1.612955, 1.61323, 1.61406, 1.6102, 1.606695, 1.60757, 1.59774, 1.59611, 1.597425, 1.597505, 1.59687, 1.59683, 1.596235, 1.59762, 1.59792, 1.59878, 1.596685, 1.598745, 1.59928, 1.60067, 1.602755, 1.603465, 1.607645, 1.608225, 1.60736, 1.60442, 1.604255, 1.60657, 1.60907, 1.604735, 1.607615, 1.61128, 1.607135, 1.60798, 1.60935, 1.60968, 1.60865, 1.607105, 1.60607, 1.606545, 1.60638, 1.607575, 1.60701, 1.60822, 1.606605, 1.604175, 1.617025, 1.615945, 1.616205, 1.61726, 1.61868, 1.618035, 1.62082, 1.620575, 1.62089, 1.61883, 1.61219, 1.61243, 1.61167, 1.61194, 1.61212, 1.61281, 1.61193, 1.61268, 1.606455, 1.60555, 1.60459, 1.60322, 1.604705, 1.60562, 1.606145, 1.6077, 1.60683, 1.60916, 1.611945, 1.61187, 1.611335, 1.60832, 1.609145, 1.60955, 1.608575, 1.60676, 1.606755, 1.60695, 1.607395, 1.606405, 1.6076, 1.606815, 1.60695, 1.604905, 1.59545, 1.59164, 1.59162, 1.592925, 1.59173, 1.590465, 1.590475, 1.588995, 1.58925, 1.590845, 1.590575, 1.589605, 1.59287, 1.59246, 1.597345, 1.596035, 1.591425, 1.59756, 1.60024, 1.59879, 1.600055, 1.598305, 1.597, 1.59925, 1.596045, 1.598845, 1.600635, 1.606405, 1.60702, 1.609275, 1.607365, 1.609575, 1.60851, 1.60739, 1.607985, 1.60689, 1.60864, 1.61119, 1.606205, 1.60851, 1.61039, 1.6088, 1.609185, 1.609595, 1.609035, 1.609775, 1.61074, 1.61063, 1.61041, 1.612855, 1.612635, 1.61363, 1.613635, 1.61695, 1.61705, 1.615905, 1.615515, 1.61577, 1.617205, 1.618045, 1.616225, 1.61466, 1.61568, 1.61528, 1.613335, 1.613045, 1.611435, 1.61178, 1.611265, 1.612395, 1.612615, 1.61215, 1.607975, 1.604285, 1.60507, 1.60358, 1.606845, 1.606225, 1.605045, 1.60427, 1.60436, 1.604135, 1.60491, 1.60554, 1.603425, 1.60145, 1.602715, 1.602035, 1.603575, 1.60334, 1.602125, 1.602895, 1.602555, 1.60353, 1.603785, 1.60398, 1.603185, 1.60395, 1.605205, 1.608145, 1.6097, 1.608285, 1.60858, 1.609015, 1.608575, 1.609035, 1.61034, 1.61067, 1.61045, 1.610075, 1.609925, 1.609565, 1.61126, 1.61328, 1.612295, 1.61265, 1.611675, 1.61242, 1.61272, 1.61275, 1.61212, 1.612105, 1.610675, 1.611365, 1.617255, 1.61567, 1.613815, 1.61384, 1.613175, 1.61411, 1.6132, 1.613675, 1.61394, 1.613675, 1.612405, 1.61159, 1.61244, 1.6149, 1.609405, 1.600625, 1.60129, 1.600285, 1.597765, 1.59804, 1.597085, 1.59792, 1.598775, 1.598545, 1.60051, 1.602205, 1.599575, 1.599565, 1.600345, 1.59987, 1.599305, 1.599525, 1.597605, 1.599295, 1.59902, 1.600385, 1.59634, 1.59984, 1.599365, 1.599665, 1.59966, 1.597265, 1.593855, 1.59653, 1.59713, 1.59792, 1.59974, 1.60036, 1.599825, 1.598095, 1.598495, 1.59798, 1.597485, 1.59773, 1.597355, 1.5986, 1.599495, 1.599755, 1.60003, 1.600025, 1.600375, 1.60105, 1.598955, 1.600155, 1.599765, 1.600475, 1.60022, 1.6006, 1.60181, 1.596045, 1.5943, 1.588815, 1.59068, 1.596245, 1.59832, 1.59755, 1.59771, 1.59605, 1.595625, 1.59563, 1.597925, 1.599085, 1.59813, 1.594745, 1.593165, 1.592695, 1.586095, 1.58439, 1.583355, 1.583495, 1.58396, 1.58395, 1.58188, 1.58351, 1.58259, 1.583445, 1.582, 1.58423, 1.584275, 1.58594, 1.58744, 1.58719, 1.588185, 1.58738, 1.589525, 1.590055, 1.59015, 1.588425, 1.590905, 1.589435, 1.587295, 1.585705, 1.585945, 1.584915, 1.584655, 1.585055, 1.585295, 1.58395, 1.58466, 1.584475, 1.58468, 1.585585, 1.586555, 1.588415, 1.59241, 1.591835, 1.591695, 1.590885, 1.591405, 1.590985, 1.591665, 1.592275, 1.5882, 1.581655, 1.580375, 1.58148, 1.57864, 1.578555, 1.57667, 1.577125, 1.577305, 1.57743, 1.577365, 1.577185, 1.57641, 1.574255, 1.57483, 1.57164, 1.570785, 1.57102, 1.5706, 1.568675, 1.567595, 1.56684, 1.56692, 1.56813, 1.567345, 1.565315, 1.560175, 1.565545, 1.568455, 1.567155, 1.566805, 1.566615, 1.567495, 1.57258, 1.572635, 1.571035, 1.56638, 1.56362, 1.564205, 1.56323, 1.564425, 1.56413, 1.564065, 1.56356, 1.56443, 1.565565, 1.565335, 1.565155, 1.56566, 1.565865, 1.564555, 1.564785, 1.564695, 1.56344, 1.5631, 1.56226, 1.561195, 1.56147, 1.560665, 1.562395, 1.56057, 1.56928, 1.566655, 1.56624, 1.566875, 1.56932, 1.56767, 1.56817, 1.567015, 1.567355, 1.56741, 1.56635, 1.565175, 1.566865, 1.570025, 1.57282, 1.56816, 1.570325, 1.56959, 1.56924, 1.56901, 1.570075, 1.569705, 1.56823, 1.56393, 1.56667, 1.56727, 1.56499, 1.56707, 1.564855, 1.566205, 1.56555, 1.564845, 1.565205, 1.56587, 1.56643, 1.56677, 1.564145, 1.56529, 1.56839, 1.568565, 1.569955, 1.569735, 1.570485, 1.57035, 1.569595, 1.568, 1.567995, 1.568395, 1.56889, 1.567615, 1.56646, 1.57027, 1.57135, 1.57154] 

Kommentarer

  • Velkommen til CodeReview.SE! Ville du være i stand til at levere dummy-data, så man kan prøve din kode, før du gennemgår den?
  • Hej Josay, jeg ' har tilføjet en eksempelliste med data til dig, hvis du ' gerne vil teste.

Svar

  • Rekursion er et godt værktøj til det rigtige job, men her bruges det til at udføre enkel looping. Som sådan er koden .. .
    • er sværere at læse og grunde til.
    • er langsommere, fordi meget af koden i ema kun behøver at køre en gang.
    • mislykkes med en stor nok værdi på window på grund af o verflowing Pythons opkaldstak.
  • Venligst dokumenter mindst parametrene for hver funktion, f.eks. at window er vinduet længde og at position tæller baglæns fra slutningen af data. (Faktisk ville tingene være klarere, hvis position var et normalt fremadrettet indeks til data)
  • Hæv en undtagelse, når du finder ud af, at en parameter har en ugyldig værdi. Hvis du returnerer None i stedet, vil det kun medføre en mere forvirrende undtagelse senere. Faktisk, hvis jeg prøver Indicators().ema(close_prices, 600) får jeg uendelig rekursion, fordi sma returnerer None, hvilket gør ema kald sma igen og igen.
  • Det forrige punkt afslører også, at if len(data) < window + 2 er ikke den rigtige gyldighedskontrol.
  • + 1 i data[-window*2 + 1:-window + 1] synes ikke korrekt for mig. Jeg antager, at du vil have data[-window*2:-window]
  • Erklæringen return previous_ema er et underligt sted, fordi på det tidspunkt du har beregnet en ny current_ema. Dette er basissagen til rekursionen, og det er almindeligt at håndtere basissagen først.

Min forslag til ema:

def ema(self, data, window): if len(data) < 2 * window: raise ValueError("data is too short") c = 2.0 / (window + 1) current_ema = self.sma(data[-window*2:-window], window) for value in data[-window:]: current_ema = (c * value) + ((1 - c) * current_ema) return current_ema 

Svar

Temmelig overfladisk anmeldelse:

Du behøver ikke at skrive en klasse til det, du laver (og jeg foreslår, at du kigger på denne video ). Din klasse indkapsler ikke nogen data, og du bruger dem bare til at have dine funktioner i samme enhed. Jeg gætter på, at ting ville være lettere at forstå, hvis du definerede classmethod for at gøre det indlysende, at du ikke virkelig ville stole på nogen som helst forekomst. En endnu bedre mulighed ville være at bare definer funktioner i et indicator -modul.

Kommentarer

  • Tak for forslagene! Jeg havde faktisk dem som klassemetoder og debatteret gå frem og tilbage mellem endda at bruge en klasse eller bare definere funktioner i et indikatormodul (som jeg nu vil gøre).
  • Så lige videoen også, gode ting.

Skriv et svar

Din e-mailadresse vil ikke blive publiceret. Krævede felter er markeret med *